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Polya’s enumeration theorem is used to derive an algorithm for counting all hexagonal close-packed struc- 
tures with a unit cell of given size, having composition MX,, where X is an hcp anion, M is an octahedrafly 
coordinated cation, and no face sharing is permitted between octahedra. Generalizations of this algorithm 
to enumerate ordered derivatives of these structures, hcp structures with tetrahedral instead of octahedral 
cations, and similar structures having different stacking sequences among the close-packed layers are 
sketched. 

Introduction 

Mathematical counting problems are impor- 
tant in crystallography. The 14 Bravais lat- 
tices, 32 crystallographic point groups, and 
230 Fedorov space groups are well known, 
and the 1651 Shubnikov two-colored sym- 
metry groups and their extensions by Belov 
and others are becoming increasingly familiar 
as space groups of ferromagnetic materials. 
Readable derivations of these symmetry 
groups can be found in (I-3) to name only 
three. 

The work of Smith and Rinaldi (4) on feld- 
spars and zeolites, Ross et al. (5) on micas, 
and Moore (6, 7) on complex oxides has 
shown the success of straightforward com- 
binatorial methods in developing structural 
hierarchies. Despite these successes, the 
number of families of structures which have 
been provided with a careful enumerative 
classifications remains very small. 

I present a combinatorial algorithm for the 
enumeration of all hexagonal close-packed 
structures with cations ordered over the octa- 
hedral sites, and suggest related applications. 
The primary mathematical tool used here is 
Polya’s enumeration theorem, a method for 
counting colorings of a set under the action of 

a given symmetry group (see the original ac- 
count by Polya (8), or the treatment by de 
Bruijn (9), whose explanation the following 
paragraphs summarize). 

If G is a group of symmetries acting on a 
finite set D containing k elements then each 
element g of G can be decomposed into a col- 
lection of cyclic permutations. If there are t, 
cycles of length 1, t, cycles of length 2, and so 
on, the cycle structure of g is the monomial 
x7x2 . . .x2, where no cycle has length greater 
than k and where the xi)s are dummy vari- 
ables. The cycle index of G is defined as the 
average Z(G; xi, x2, . . .) of the cycle struc- 
tures of the elements of G. Let R be a set in 
which each element r E R is assigned a weight 
w(r). Then each function f from D to R can be 
given a weight w(f) = ndEow(f(d)). Let two 
functions f and h be considered equivalent if 
an element g E G exists such that f(g(d)) = 
h(d) for every d E D. Then Polya’s theorem 
says that the number of equivalence classes of 
these functions (called patterns) counted ac- 
cording to their weights is 

c w(f)= 
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As a simple example, let D be the set of ver- 
tices of an octahedron, let G be the group of 
proper rotations of the octahedron, let R = 
{black, white} and let w(black) = w(white) = 
1. Then the patterns are the discrete ways of 
coloring the octahedral vertices in the two 
colors, and every pattern has weight 1. Two 
colorings are regarded as different if one can- 
not be taken to the other by a proper rotation. 
zw(f) counts the number of colorings. The 
group G contains the identity, having cycle 
structure xy; six 90° rotations, having cycle 
structures x:x4; eight 120° rotations, having 
cycle structures x:; three 180° rotations about 
lines connecting two vertices, having cycle 
structures x:x:; and six 180” rotations about 
lines joining the midpoints of two edges, hav- 
ing cycle structures x:. The cycle index of G is 
therefore (1/24)(x; + 6x:x4 + 8x,Z + 3x:x; + 
6x:) and the number of G-distinct two- 
colorings of the vertices of an octahedron is 
(1/24)(26 + 6 .22.2 + 8 .22 + 3 .22. 22 + 
6.23)= 10. 

Enumerating hcp Structures 

Consider the question of how many hcp 
structures exist having stoichiometric com- 
position MX, in which the octahedral sites 
stacked perpendicular to the close-packed 
layers are alternately filled and empty with res- 
pect to M cations. This number depends upon 
the unit cell chosen. Let R be the radius of an 
X ion. We shall assume that the cell is ortho- 
rhombic with c perpendicular to the close- 
packed layers, c = 4R6’12/3 (a two-layer 
repeat), b parallel to the vector between 
two nearest-neighbor X ions in one layer, b = 
2nR, and a = 2(3)1’2mR. The cell origin is 
chosen to lie at the center of an octahedral 
void. This cell and its two-dimensional image 
under projection parallel to c we call an m x n 
cell. The compounds rutile (m = n = l), ct- 
PbO, (m = 1, n = 2), &Nb,C (m = 2, n = I), 
s-Fe,N (m = 1, n = 3) can all be referred to 
such a cell (Wells (IO)), and other cell geo- 
metries pose no additional difficulties. 

In a hexagonal close packing the octa- 
hedral sites between two adjacent layers share 
edges to form a configuration which, when 
projected along c, becomes a hexagonal net. 
All other octahedral sites are stacked directly 
above or below these through face sharing 
(IO). Hence, each of the structures we wish to 
count can be uniquely represented by a 
colored hexagonal net showing the projection 
of one layer of octahedra, in which the hexa- 
gons are colored black or white according as 
the corresponding octahedra are filled or va- 
cant. The hexagons of the two-dimensional 
m x n cell are labeled as in Fig. 1. 

Two hcp structures MX, are considered 
equivalent if one is the image of the other un- 
der the action of some element of P6,lm mc, 
the symmetry group of the anion framework. 
The symmetry group induced by P6,lm mc on 
the space of colored nets is p6m @ { 1, I’} (see 
Appendix for definition), where 1’ is the anti- 
identification map interchanging the two 
colors. Since two hcp structures MX, are 
related by P6,lm mc exactly if the correspond- 
ing colored nets are related by p6m @ { 1, 1’1, 

I- b 

0 “00 "02 
H 0,2n-2 

I I 

I ‘c "1.2~~1 - 

1 

I 

FIG. 1. The labeling of the hexagons in the m x n unit 
cell. 
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the problem of counting structures reduces to 
the problem of counting equivalence classes of 
colored nets under the action ofp6m @ { 1,l’ 1. 

This problem must be treated in three steps, 
each of which is reducible to a problem in 
graph theory solved using Polya’s theorem 
(see (II) or (12) for an account of graphical 
enumeration theory). 

The first step is to count the number of 
equivalence classes under the action of the 
group cmm of symmetries of four types: trans- 
lations, glide reflections normal to b, glides 
normal to a, and twofold rotations parallel to c 
(if in the cell shown in Fig. 1 either m or n is 1, 
some of these classes are the same). This is 
equivalent to counting equivalence classes of 
two-colorings of a graph whose vertices are 
the centers of the hexagons in one unit cell and 
whose edges connect the centers of adjacent 
hexagons. Thus H,, is connected to Ho*, HI,, 
H O.Zn-2, H l,Zn-1, H 2m-1,1~ and H2m-1,2n-1. 
The symmetry group S of this graph is cmm 
modulo unit cell translations. 

To determine the cycle structure of a tran- 
slation r, we note that the number of cycles of 
length k in r is l/k times the number of hexa- 
gons Hii such that zk(Hu) = H,, and such that 
if 0 < p < k, P(H,.) # H,. The action of any 
translation can be written z(HJ = Hi+s,j+l, 
where 0 5 s < 2m, 0 5 t < 2n, and s = t (mod 
2). Consequently, f(H& = H,s+i,rl+j; so that 
z’(H,) = H, if and only if both rs + i = i (mod 
2m) and rt +j = j (mod 2n), i.e., if and only if 
both 2m(rs and 2nJrt. This in turn is equiva- 
lent to the two conditions that both 
(2m/(2m,s))lr and (24(2n,t))(r, or to the 
single condition that [2ml(2m,s), 2n/(2n,t)llr. 

The smallest positive r satisfying this con- 
dition is [2m/(2m,s), 2n/(2n, t)] itself. Further, 
this condition is independent of i and j so that 
if f(H,) = H, then for any k and I, 7’(Hkl) = 
Hk,. Therefore, if 7 is the translation given by 
r(Hi~) = Hi+s,j+t’ then all of the cyclic per- 
mutations into which 7 can be decomposed 
have length [2ml(2m,s) 2n/(2n, t)l. Since z per- 
mutes 2mn different hexagons, the number of 
these cycles is 2mnl[2ml(2m,s), 2nl(2n,t)l. 

The sum of the cycle structures of the pure 
translations in S is thus 

1 X2mn/[2m/(2m,s), Zn/(Zn, 01, 

Oss<Zm 
[Zm/(Zm,s), 2nf(2n,t)l 

o<r<2n 
s-t (mod 2) 

Glides normal to 6, i.e., translations follow- 
ing a reflection in a mirror plane normal to b, 
act by a(H,) = Hi+,, -j+ t, with the restrictions 
above on s and t. Thus, a’(HJ = Hii if and 
only if both i + sr = i (mod 2m) and either r is 
even or r is odd and -j + t = j (mod 2n). If 
a’(HJ = H, and r is odd, then 2j E t (mod 
2n), so t is even and can be written t = 2t’. 
Since s and t have the same parity, s = 2s’. 
Further, j = t’ (mod n), so j is either t’ or 
t’ + n; and 2mlsr, so m/s’ r. For an odd r 
satisfying this condition to exist, it is necessary 
and sufficient that the smallest r satisfying this 
condition, m/(m,s’), be odd. Thus, o’(HJ oc- 
curs with r odd if, and only if, s = 2s’, t = 2t’, 
m/(m,s’) is odd and j equals t’ or t’ + n. In this 
case, the 2m hexagons with these values of j 
are permuted by u in cycles of length 
m/(m,s’), and all other hexagons are permuted 
in cycles whose length is the smallest even 
number r’ divisible by ml(m,s’), i.e., 
2ml(m,s’). In the other case where u’(HJ = 
Hii implies that r is even, all the disjoint cycles 
of u have length 2m/(2m,s). Thus, the sum of 
the cycle structures of all glides normal to b is 

2: 
Oszr’<2n 

‘m/(m, s’) 
2m/(m/(m, s’)) X~~~~~Jj;)/(2ml(m.s’)) 

0<2s’<2m 
m/(m,s’) is odd 

+ c Zmnl(Zml(2m, s)) 

all others, I 
X2m/(2m, s) 

ors<2m 
ozrczn 

s=t (mod 2) 

= c 
nx 2(m. 5’) 

O<s<m 
m/Cm. s’) 

*ym~(p$)s’) 

m/(m.s’)odd 

+ 2 
nx n(2m.s) 

all others 
Zml(2m.s) 

O<s<2m 

= ;’ n~(~)X,2”+‘~fd X;;W-l)rr/d 

+ 1 n#(2kd) x~2~+1-Xp’d, 
O<k<a+l 

d’l! 
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where m = 274 ,u is odd, and # is the Euler 4 
function (see Appendix). The last equality 
arises because if kli then #(l/k) is the number 
of integers x with 0 I x < I satisfying (x,l) = 
k. 

Exactly the same formulas with s and t 
interchanged and m and n interchanged give 
the sum of the cycle structures of all glides 
normal to a. 

Finally, twofold rotations parallel to c act 
by w(H,J = H,-, t-,. For all these operations 
$(H,) = Hti. If W(HJ = H, then s - i = i 
(mod 2m) and t-j = j (mod 2n). As shown 
above, this forces s = 2s’, t = 2t’, i = s’ (mod 
m), andj = t’ (mod n). Since i andj, like s and 
t, must have the same parity, these con- 
gruences have four solutions i, j with 0 I i ( 
2m and 0 5 j < 2n if both s’ = t’ (mod 2) and 
m = n = 0 (mod 2), they have no solutions if 
both s’ f t’ (mod 2) and m = n 5 0 (mod 2), 
and they have two solutions if one or both of 
m and n are odd. Counting the number of 
times each of these conditions is met we see 
that the sum of the cycle structure of this last 
set of symmetries is mn(xjxy-l + xy) if 
either m or n is odd, and is rnnf~,m”-~/2 + 
3mnx,m”/2 if both m and n are even. 

The total number of symmetries considered 
is 8mn, so the cycle index of the symmetry 
group S is 1/8mn times the sum of the four 
terms derived above. Call this cycle index 
Z(m,n; x,, x2, x3, . . .). By Polya’s theorem, 
the number of S-distinct two-colorings of the 
m x n cell is Z(m, n; 2, 2, 2, . . .). 

The second step of the solution is to expand 
S by including in it I’, the anti-identification 
map, and to count the two-colorings of the 
m x n cell under the action of the new 
symmetry group S @ { I,1 ’ 1. According to a 
generalization of Polya’s theorem found in (9), 
this number is (Z(m,n; 2, 2, . . .) + Z(m,n; 0, 
2,0, 2, . . .))/2. 

The third step is to extend the symmetry 
group cmm to include three- and six-fold 
rotations. This is more difficult because in 
general when a pattern having an m x n planar 
unit cell is rotated 60 or 120” the orthogonal 

unit cell of the rotated pattern with edges 
parallel to the unrotated axes is no longer an 
m x n cell. Since a threefold rotation together 
with cmm generates a sixfold rotation, we may 
confine ourselves to the latter and ask which 
m x n patterns are transformed into others by 
such a rotation. We shall call such patterns 
rotation consistent patterns. 

A sixfold rotation p about the center of the 
Ho, acts by taking H, to H,,,,?,,, ti-3i,,2. In any 
m x n pattern, the color of HiI is the same 
color of Hi+2mx,j+2nyy and P(Hi+2mx.j+2ny) = 
H (f+i)/2+mx+ry,(j--3f)/Z+n~-3mx; so for any 
m x n pattern related to another by a sixfold 
rotation it must be that for any i, j, x, and y, 
H (i+n/2, (j-3i)/Z has the same color as 
H (i+i)/Ztmxtny,(j-31)/2+ny--3mr A straight- 
forward analysis of this condition using 
elementary number theory shows that it forces 
the pattern to have as a unit cell a subcell of 
that generated by the vectors Ho,(2n,6m) and 
H (rn,?t)‘tr’ where p is any number of the form 
(m, n) - 4mx - (2n, 6m)z, z is arbitrary and x 
is a fixed integer such that for some y, mx + ny 
= (m,n). We may choose @ such that the unit 
cell has y = 60° or y = 30” by making p = 
(n, 3m). If (n, 3m) = (n,m) this is the most 
convenient set of basis vectors and results in a 
unit cell having one edge going from Ho, to 
H o,2(n,m) and another of equal length at a 60” 
angle to it. If (n, 3m) = 3(n, m), a better choice 
of basis vectors is H,,, 2m) 0 and Hc,,,j,c, 3mj, 
so that the unit cell is a 6@ rhombus having 
H (2n,2m).0 as one edge. Any m x n pattern 
having as a unit cell a subcell of this will be 
carried by a three- or sixfold rotation to 
another m x n pattern, and any pattern not 
having such a unit cell will not. 

An algorithm to complete the solution now 
proceeds as follows. Let T(m,n) = (Z(m,n; 2, 
2 . .) + Z(m,n; 0, 2, 0, 2, . . .))/2. Use the 
formulas in the paragraph above to choose a 
unit cell which is shared by all rotation 
consistent m x n patterns, and compute the 
cycle index Z’ of S’, the symmetry group of 
the smaller cell generated by translations and 
mirror planes normal to the original 
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orthogonal axes, i.e., by cmm modulo the 
translation group of the new cell. Let T’(m,n) 
= (Z'(m,n; 2, 2, . ..) + Z’(m,n; 0, 2, . ..))/2. 
This is the number of S @ { l,l’}-distinct 
patterns which, after a three- or sixfold 
rotation still possess an m x n unit cell with 
respect to unrotated axes. Finally, compute the 
cycle index Z” of the new cell under the 
symmetry group S” generated by translations, 
mirror planes normal to the axes of the old 
cell, and sixfold rotations around HoO, i.e., by 
p6m modulo unit cell translations. T"(m,n) = 
(Z”(m,n; 2, 2, . . .) + Z”(m,n; 0, 2, . . .))/2 is 
the number of S” @ { 1, l’}-distinct two- 
colorings of the new cell. The original 
enumeration by Z counts T’(m,n) distinct 

rotation consistent m x n patterns. In reality 
there are only T"(m,n) such patterns under 
the action of p6m @ { 1,l’). Hence, the total 
number of distinct m x n hexagonally close- 
packed structures MX, with two-layer repeat 
perpendicular to the close-packed layers is 
N(m,n) = T(m, n) - T'(m,n) + T"(m,n). This 
completes the algorithm, and with it the 
original problem. 

Observe that the new cell can be made into 
a graph just as the old m x n cell was, and that 
the groups S’ and S” act naturally on this 
graph. The cycle indices Z’ and Z” could be 
written down explicitly as was Z; however, the 
explicit formulas are not as compact as those 
for Z, and thus they add little clarity. Further, 

FIG. 2. The orthorhombic cell in the top row is the 2 x 2 cell. The hexagonal subcell is that common to all 2 x 2 
patterns taken to other such patterns by a three- or sixfold rotation. The remaining rows show the 18 S @ ( I, 1’ )- 
distinct 2 x 2 patterns. Self-complementary patterns are marked =, and patterns having the hexagonal cell above as a 
unit are marked *. The last two patterns are S @ { 1,l’ )-distinct, but are related by a 60’ rotation and are, therefore, 
S” @ ( 1,1’ }-equivalent and represent the same structure. Physically, these are projections showing the occupied octa- 
hedra in one layer of each of the 18 hcp structures MX, sharing the 2 x 2 “olivine” cell, where two structures are 
regarded as identical only if they are related by an element of C 2/c 2/m 2,/m, the maximal orthorhombic subgroup of 
P6,/m mc. Only the first 17 of these actually represent distinct structures; the last two patterns are different settings of 
the rutile structure related by a symmetry in P6,lmmc but not in C 2/c 2/m 2,/m. 
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the new unit cell is often much smaller than the 
old; and unless m and n are both multiples of 
some fairly large number, it is easier to 
determine Z’ and Z” by constructing all 
elements of S’ and S” than by the use of these 
formulas. 

Some Examples 

Let us show how the arguments above work 
in some special cases. Consider the 2 x 2 
orthorhombic cell which is the unit cell of the 
well-known olivine structure type. For this unit 
cell, Z(2,2; xi, x2, x3, . . .) = (1/32)(x: + 
6x:x; + 13x; + 12x,2), Z’(2,2; x,, x2, x3, . . .) 
= (1/8)(x; + 2x+, + 3x; + 2x,), and Z”(2,2; 
x,, x2, x3, * * * ) = (1/24)(x; + 6x:x, + 8x,x, + 
3x; + 6x,). Thus, 7’(2,2) = 18, T’(2,2) = 4, 
T”(2,2) = 3, and N(2,2) = 18 - 4 + 3 = 17. 
There are, therefore, eighteen S @ ( 1,l’ }- 
distinct 2 x 2 patterns, four of which are still 2 

x 2 patterns after a sixfold rotation. These 
four collapse to three under the action of S ” 
@ { 1,l’ ), so that N(2,2) = 17. Figure 2 shows 
the 2 x 2 cell and these patterns. 

Table I lists the values of T(m,n) and 
N(m,n) for m + n < 8. The formulas used to 
compute T(m,n) are symmetric in m and n so 
that T(m,n) = T(n,m). The unit cell common 
to all rotation consistent m x n patterns is 
selected by formulas not symmetric in m and 
n, so that in general N(m,n) # N(n,m). In 
particular, N(2,6) # N(6,2). 

For m + n I 8, T(m,n) is always very 
nearly equal to N(m, n) and is considefably 
easier to compute. Indeed, this is true in 
general, and as mn + 03, N(m,n)/T(m,n) + 1. 
The proof of this assertion is as follows. The 
leading term in Z(m,n; x1, x2, . . .) is 
x:“*/8mn, so T(m,n) L 22mn/16mn. Further, 
the cell common to all rotation consistent 
m x n patterns is always smaller than the 

TABLE I 

VALUESOF T(~,~)ANDN(~,~)FoR m + n<8” 

n 
Nh n) - 

Wn, 4 1 2 3 4 5 6 1 

m 1 2 4 8 18 44 122 362 
2 4 8 18 44 122 362 

2 4 17 88 728 1456 92352 
4 18 88 129 7456 92393 

3 8 88 2170 90466 4503160 
8 88 2176 90466 4503160 

4 18 728 90466 16835760 
18 729 90466 16836158 

5 44 7456 4503160 
44 7456 4503160 

6 122 92392 
122 92393 

7 362 
362 

D The number T(m,n) of S @ (l,l’)-distinct 2-colorings of an m x n cell and the actual 
number N(m, n) of p6m @ ( 1,l’ l-distinct 2-colorings of the same cell. T(m, n) is the number of 
hcp structures MX, with the m x n cell if two structures related by an element of C 2/c 2/m 
2,/m are regarded as identical. N(m,n) is the number of these structures under the action of 
P6,lmmc. 
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m x n cell itself. If it were not, the areas of the 
two cells would be equal. If (3m,n) = 3(m,n), 
this implies that 4mn 3”*R* = 6(m,n)*3”*R2, 
so that 2(3m)n = (3m,n)*. This is impossible 
since (3m,n) 5 min {3m,n} < ((3m)n)l12. A 
similar contradiction arises if (3m, n) = (m, n). 

The smaller hexagonal cell therefore con- 
tains at most mn hexagons, so each of the 
numbers whose average is Z’(m,n; 2,2, . . .) is 
at most 2”‘“, and T’(m,n) I Z’(m,n; 2, 2, . . .) 
I 2”‘“. Also, Z”(m,n; x,, x2, . . .) = Z’(m,n; 
x,, -3, * * * )/3 + P(x,, x2, . . .), where P is a 
polynomial all of whose coefficients are 
positive, so T”(m,n) 2 T’(m,n)/3. Thus, 
T(m,n) - N(m,n) = T’(m,n) - T”(m,n) 5 
2T’(m,n)/3 I 2mn+1/3, so (T(m,n) - 
N(m, n))lT(m, n) 5 16mn 2mn+ l/(3. 22mn) = 
mnl(3 a 2mnmne5 ), which approaches zero as 
mn + co. For all pairs of m and n except those 
with m = 1 or n = 1 (for which N(m,n) = 
T(m,n)) and those in Table I, mn > 14, so 11 - 
N(m,n)lT(m,n)l I 11168. For most m and n, 
these bounds can be refined considerably. 

The cycle indices produced here can also be 
employed to calculate the number of (2 x 2)- 
ordered derivatives of the seventeen 2 x 2 
structures in Fig. 2. Indeed, Polya’s theorem 
implies that if Z(2,2; 1 + zi + z2 + . . . + z,, 1 
+ zf + z; + . . . + z& . . .) is expanded using 
multinominal coefficients, then the coefficient 
of the liozflz* . , . z$ term in the expansion will 
be the number of S-invariant patterns in which 
i,, hexagons are colored with color cO, i, 
hexagons are colored c,, etc. For example, the 
coefficient of z:z~z~, 9, represents the number 
of S-distinct ways to color five of the hexagons 
red, two of them white, and one of them blue. 
The actual number of p6m-distinct m x n 
patterns in which ij hexagons are colored cj 
will be, by the same reasoning used in our 
earlier algorithm, the coefficient of liozfl . . . z$ 
in Z(2,2; 1 + z1 + . . . + z,, 1 + zf + . . . + 272, 
. . .) -z (2,2; 1 + z; + . . . + z;, 1 + zf + . . . 
+ z;, * . .) -t Z”(2,2; 1 + z; + . . . + z;, 1 + z; 
+ . . . + z;, . . .), where the exponents in the 
arguments of Z’ and Z” are doubled because 
there are two of the hexagonal unit cells 

derived in the third part of the basic algorithm 
in each of the original orthorhombic cells (see 
(9)). 

Colored patterns may be used to represent 
ordered derivatives of the structures represen- 
ted by black and white patterns. The three- 
colored patterns, for example, could be used to 
represent derivatives of the MX, structures in 
which the M atoms are replaced by A and B 
atoms, the A atoms can occupy octahedra in 
either of the nonequivalent layers, and all the B 
atoms are constrained to occupy octahedra in 
the layer c = 0. The four-colored patterns 
might then represent all derivatives 
a%X*~a+b~ of the MX, structures, with A and 
B atoms constrained only by the requirements 
that the repeat distance parallel to c be two 
close-packed layers and that occupied octa- 
hedra not share faces. If this representation is 
to be used to enumerate such structures, some 
account must be taken of the fact that there 
are two nonequivalent layers of octahedra, 
either of which may be chosen as the layer at 
c = 0 and projected to form a colored net. In 
the case of two-colorings, this was done by 
implicitly imposing a symmetry group on the 
set of colors and using a theorem of de Bruijn 
(9). This was described as extending the 
groups S, S ‘, and S” to include the anti- 
identification. Here, also, it can be done by 
imposing upon the colors c,, c2, c3, and cq a 
symmetry group H consisting of the identity 
and an element interchanging c, and c, and 
interchanging c3 and c,, (if c, and c2 represent 
an A atom in layers 1 and 2, respectively, and 
c3 and c,, represent a B atom in these layers). 
Two patterns P and P’ are now regarded as 
identical if for some symmetries g E p6m of 
the hexagonal net and h E H, Pg = hP’. 
Theorem 5.4 of de Bruijn (9) can be used to 
count all such patterns, which represent all 
orderings of two atomic species over the 
occupied octahedral sites in the structures 
enumerated by N(m,n). This number is 
M(m,n) = (Z(m,n; 4,4, . . .) + Z(m, n; 0,4,0, 
4, . . .))/2 - (Z’(m,n; 4,4,. . .) + Z’(m,n; 0,4, 
. . . ))/2 + (Z”(m,n; 4, 4, . . .) + Z”(m,n; 0,4, 
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. . .))/2. For the olivine cell, m = n = 2, M(2,2) 
= 1506. 

In Table II, the numbers of colorings of 
different types have been listed assuming 
symmetry group {l} on the space of colors. 
Note that this table gives additional infor- 
mation about the two-colorings of the 2 x 2 
cell by telling how many distinct colorings 
have k hexagons white and 8-k hexagons 
black. This information could have been 
obtained more easily by considering the two- 
colorings where w(black) = 1, w(white) = X. 

TABLE II 

NLJMBERS OF COLORINGS OF DIFFERENT TYPES 
ASSUMING SYMMETRY GROUP {l ) ON THE SPACE OF 

COLOFM 

Representative term 

4 
x:x* 
X:X2 2 
x:x*x3 
x:x3 
x:x:x 2 3 

4$X3X4 

X4X4 1 2 
x:x:x3 
x:x2x2 2 3 

x:x;x3x4 
x:x*x3x*x5 
x:x:x: 
x:x:x,x, 

~IX2X3X4~5 xjx~x:x, 
x : x2 x3 x4 xs X6 
x:x:x:x: 
x:x:x:x,x5 
x:x;x’x4x,x6 
x:x,x,x,%%5~, 

1x1x*x3x4x5%x, 

S-Distinct Actual 
patterns patterns 

1 1 
1 1 
4 4 
4 4 
4 4 
9 9 

15 15 

8 I 
14 14 
24 23 
33 33 
51 51 
25 25 
44 44 
63 63 

114 114 
210 210 
102 100 
171 171 
324 324 
630 630 

1260 1260 

Total 3117 3113 

D Column 1 shows a representative term lnox:!..x;’ 
indicating that no hexagons are colored co, etc. Column 2 
shows how many S-distinct patterns satisfy this coloring 
scheme, and column 3 shows how many patterns exist 
satisfying this coloring scheme distinct under all 
symmetries of the hexagonal net. The unit cell is the 
2 x 2 “olivine” cell. 

By Polya’s theorem such colorings are 
enumerated according to their weights by 
Z(2,2; 1 + X, 1 + X2, . . .) and the correspond- 
ing Z’ and Z”. 

Related Problems 

The approach used here lends itself to a 
large number of related problems of possible 
importance to crystallographers. The require- 
ments that no face-sharing octahedra be 
permitted and that the repeat distance parallel 
to c be two close-packed layers can be relaxed 
using either of two techniques. S, S’, and S” 
may be enlarged to symmetries of the actual 
three-dimensional octahedral framework 
instead of symmetries of a two-dimensional 
projection. Alternatively, S, S’, and S” may 
be left unchanged; all the desired stackings of 
different atomic species, plus vacancies in 
vertical columns with given vertical repeat, 
may be represented as colors on the hexagon 
net; and de Bruijn’s (9) generalization of 
Polya’s theorem may be used just as in the 
example above of four-colorings to impose on 
the set of colors a group of symmetries 
corresponding to translations parallel to c and 
three-dimensional inversions. The problem in 
which all the octahedral holes are empty but 
the tetrahedral holes are partially occupied is 
similar to the situation considered here and 
can be treated using identical methods. The 
problem of enumerating structures with given 
unit cells possessing r-occupied octahedral 
sites and s-occupied tetrahedral sites can also 
be solved using a generalization of Polya’s 
theorem stated by Sheehan (13). This 
enumeration, however, counts a large number 
of physically improbable structures containing 
face-sharing polyhedra. There does not seem 
to be a straightforward generalization of the 
methods used here which eliminates this draw- 
back, although in practice for fairly small cells 
with fairly large octahedral populations (for 
example, in the case of the olivine structure 
type itself), the pattern of occupancy of octa- 
hedral holes along with Pauling’s (14) electro- 
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static rules more or less dictates the location of 
tetrahedrally coordinated cations. 

The problem of enumerating hcp structures 
MX, with a hexagonal unit cell is less complex 
than the case treated here in which the cell is 
orthorhombic in that three- and sixfold 
rotations always preserve the two-dimensional 
hexagonal unit cell with regard to unrotated 
axes. Thus, p6m can act directly on the graph 
constructed from the hexagonal cell, while it 
could not do so in the orthorhombic case, 
forcing us to construct a smaller cell on which 
it could act via S “. The number of P6,/mmc- 
distinct hcp structures MX, with a given 
hexagonal unit cell is thus +(Z(G; 2, 2, . . .) + 
Z(G; 0, 2, 0, 2, . . .)), where G is p6m modulo 
two-dimensional cell translations, and G acts 
on equivalence classes of hexagons. 

Most other enumeration problems involving 
close packings with a given unit cell will most 
closely resemble the problem of counting hcp 
structures 44X, with an orthorhombic cell, in 
that the symmetry group G, of the anion 
framework (in our original problem G, = 
P6,lmmc) will properly contain the maximal 
subgroup G: (above, G: = C2fc 2/m 2,/m) 
having the unit cell translations as a normal 
subgroup. To evaluate the number of G,-equi- 
valence classes of structures it will be 
necessary in these cases also to choose 
subcells whose translation groups are normal 
in groups Ha, G: c Ha s G,, and to evaluate 
quantities analogous to T’ and T” above. 
Indeed, if G: is not a maximal subgroup of G, 
(as C 2/c 2/m 2,/m was of P6,lmmc) it will be 
necessary to construct such cells for several 
groups Ha. 

Consider, for example, the problem of 
counting cubic close-packed structures with 
several atomic species, plus vacancies ordered 
over the octahedral (or tetrahedral) sites. This 
means enumerating derivatives of the NaCl 
structure where earlier we enumerated 
derivatives of the NiAs structure. If the unit 
cell is given to be isometric the enumeration 
can be carried out using de Bruijn’s (9) 
theorem and the cycle index of Fm3m modulo 

cell translations, where Fm3m is regarded as 
acting on octahedra (or tetrahedra). If, 
however, the unit cell has lower symmetry 
than cubic, then the cell translation group will 
not be normal in Fm3m. As an example, let the 
unit cell be orthorhombic, have edges parallel 
to the edges of the usual cubic unit cell 
generated by {e, = b, = co} of the ccp frame- 
work and let it have a = a,, b = 2b,, c = 3c,. 
Let N(1 x 2 x 3; orth) be the number of ccp 
structures having this cell with ordered oc- 
cupancy of the octahedral holes and no tetra- 
hedrally coordinated cations, where two struc- 
tures are regarded as identical if one is related 
to the other by some element of the maximal 
orthorhombic subgroup of Fm3m having axes 
parallel to {a, b, c }. If all other symbols are 
defined similarly, then it will be seen that the 
number of structures possessing this cell and 
not related to one another by any element of 
Fm3m is N(1 x 2 x 3; orth) + (iV(1 x 1 x 3; 
tet)-N(1 x 1 x 3;orth))+ (N(l x 2 x 1;tet) 
-N(l x 2 x 1;orth)) + (N(l x 1 x 1; cub)- 
N(1 x 1 x l;tet,)-N(l x 1 x l;tet,)+N(l 
x 1 x 1; orth)). Here tet, (tet,, resp.) is the 
maximal tetragonal subgroup of Fm3m with 
four-fold axis parallel to b (c, resp.). 

The double hexagonal and other close 
packings are subject to the same analysis used 
here on the hexagonal and cubic close 
packings. 

Conclusion 

The examples sketched here may serve to 
illustrate some of the range of applications of 
elementary combinatorial techniques to 
crystallographic problems. Combinatorial 
mathematics provides many valuable tools for 
constructing algorithms enumerating classes of 
crystal structures. The classifications produced 
by these algorithms must then be evaluated on 
the basis of their usefulness in other aspects of 
crystal chemistry. It must be determined, for 
example, whether any type of simple stability 
calculation applied to all members of a family 
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of structure types suffices to discriminate 
between real structures and those seemingly 
not found in nature. Future problems in 
crystallographic enumeration may address still 
other questions in structure analysis, crystal 
chemistry, and structure systematics. 

Appendix: Mathematical Notation 
dED 
I-I g(d) 
dED 

a=b(modc) 

G@ {1,1’) 

AEB 

AcB 

d is an element of the set D 
The product of all g(d) such 
that d E D 

c divides a - b; a and b have 
the same remainder on 
division by c 
a divides b; b is an integral 
multiple of a 
The greatest common divisor 
ofmandn 
The least common multiple of 
m and n. 
The number of positive in- 
tegers less than or equal to IZ 
having no common divisors 
with n except & 1. 
The direct sum of G and 
{ 1,l’ }; the group consisting of 
all elements g. 1 and ge I’, 
where g is in G. 
A is a subset of B; all elements 
of A are elements of B. 
A is a proper subset of B ; A c 
BandAfB. 
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